Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Intraoperative imaging of slide-free specimens is crucial for oncology surgeries, allowing surgeons to quickly identify tumor margins for precise surgical guidance. While high-resolution ultraviolet photoacoustic microscopy has been demonstrated for slide-free histology, the imaging speed is insufficient, due to the low laser repetition rate and the limited depth of field. To address these challenges, we present parallel ultraviolet photoacoustic microscopy (PUV-PAM) with simultaneous scanning of eight optical foci to acquire histology-like images of slide-free fresh specimens, improving the ultraviolet PAM imaging speed limited by low laser repetition rates. The PUV-PAM has achieved an imaging speed of 0.4 square millimeters per second (i.e., 4.2 minutes per square centimeter) at 1.3-micrometer resolution using a 50-kilohertz laser. In addition, we demonstrated the PUV-PAM with eight needle-shaped beams for an extended depth of field, allowing fast imaging of slide-free tissues with irregular surfaces. We believe that the PUV-PAM approach will enable rapid intraoperative photoacoustic histology and provide prospects for ultrafast optical-resolution PAM.more » « lessFree, publicly-accessible full text available December 13, 2025
- 
            Berciano, Virginia (Ed.)Abstract Bionic multifunctional structural materials that are lightweight, strong, and perceptible have shown great promise in sports, medicine, and aerospace applications. However, smart monitoring devices with integrated mechanical protection and piezoelectric induction are limited. Herein, we report a strategy to grow the recyclable and healable piezoelectric Rochelle salt crystals in 3D-printed cuttlebone-inspired structures to form a new composite for reinforcement smart monitoring devices. In addition to its remarkable mechanical and piezoelectric performance, the growth mechanisms, the recyclability, the sensitivity, and repairability of the 3D-printed Rochelle salt cuttlebone composite were studied. Furthermore, the versatility of composite has been explored and applied as smart sensor armor for football players and fall alarm knee pads, focusing on incorporated mechanical reinforcement and electrical self-sensing capabilities with data collection of the magnitude and distribution of impact forces, which offers new ideas for the design of next-generation smart monitoring electronics in sports, military, aerospace, and biomedical engineering.more » « less
- 
            Flame-retardant and thermal management structures have attracted great attention due to the requirement of high-temperature exposure in industrial, aerospace, and thermal power fields, but the development of protective fire-retardant structures with complex shapes to fit arbitrary surfaces is still challenging. Herein, we reported a rotation-blade casting-assisted 3D printing process to fabricate nacre-inspired structures with exceptional mechanical and flame-retardant properties, and the related fundamental mechanisms are studied. 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) modified boron nitride nanoplatelets (BNs) were aligned by rotation-blade casting during the 3D printing process to build the “brick and mortar” architecture. The 3D printed structures are more lightweight, while having higher fracture toughness than the natural nacre, which is attributed to the crack deflection, aligned BN (a-BNs) bridging, and pull-outs reinforced structures by the covalent bonding between TMSPMA grafted a-BNs and polymer matrix. Thermal conductivity is enhanced by 25.5 times compared with pure polymer and 5.8 times of anisotropy due to the interconnection of a-BNs. 3D printed heat-exchange structures with vertically aligned BNs in complex shapes were demonstrated for efficient thermal control of high-power light-emitting diodes. 3D printed helmet and armor with a-BNs show exceptional mechanical and fire-retardant properties, demonstrating integrated mechanical and thermal protection.more » « less
- 
            Abstract Natural organisms have evolved a series of versatile functional biomaterials and structures to cope with survival crises in their living environment, exhibiting outstanding properties such as superhydrophobicity, anisotropy, and mechanical reinforcement, which have provided abundant inspiration for the design and fabrication of next‐generation multi‐functional devices. However, the lack of available materials and limitations of traditional manufacturing methods for complex multiscale structures have hindered the progress in bio‐inspired manufacturing of functional structures. As a revolutionary emerging manufacturing technology, additive manufacturing (i.e., 3D printing) offers high design flexibility and manufacturing freedom, providing the potential for the fabrication of intricate, multiscale, hierarchical, and multi‐material structures. Herein, a comprehensive review of current 3D printing of surface/interface structures, covering the applied materials, designs, and functional applications is provided. Several bio‐inspired surface structures that have been created using 3D printing technology are highlighted and categorized based on their specific properties and applications, some properties can be applied to multiple applications. The optimized designs of these 3D‐printed bio‐inspired surfaces offer a promising prospect of low‐cost, high efficiency, and excellent performance. Finally, challenges and opportunities in field of fabricating functional surface/interface with more versatile functional material, refined structural design, and better cost‐effective are discussed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
